624 research outputs found

    Star formation in the giant HII regions of M101

    Get PDF
    The molecular components of three giant HII regions (NGC 5461, NGC 5462, NGC 5471) in the galaxy M101 are investigated with new observations from the James Clerk Maxwell Telescope, the NRAO 12-meter, and the Owens Valley millimeter array. Of the three HII regions, only NGC 5461 had previously been detected in CO emission. We calculate preliminary values for the molecular mass of the GMCs in NGC 5461 by assuming a CO-to-H_2 factor (X factor) and then compare these values with the virial masses. We conclude that the data in this paper demonstrate for the first time that the value of X may decrease in regions with intense star formation. The molecular mass for the association of clouds in NGC 5461 is approximately 3x10^7 Mo and is accompanied by 1-2 times as much atomic mass. The observed CO emission in NGC 5461 is an order of magnitude stronger than in NGC 5462, while it was not possible to detect molecular gas toward NGC 5471 with the JCMT. An even larger ratio of atomic to molecular gas in NGC 5471 was observed, which might be attributed to efficient conversion of molecular to atomic gas. The masses of the individual clouds in NGC 5461, which are gravitationally bound, cover a range of (2-8) x 10^5 Mo, comparable with the masses of Galactic giant molecular clouds (GMCs). Higher star forming efficiencies, and not massive clouds, appear to be the prerequisite for the formation of the large number of stars whose radiation is required to produce the giant HII regions in M101.Comment: 32 pages, 5 figures, accepted for publication in the Astrophysical Journa

    A Search for Small-Scale Clumpiness in Dense Cores of Molecular Clouds

    Full text link
    We have analyzed HCN(1-0) and CS(2-1) line profiles obtained with high signal-to-noise ratios toward distinct positions in three selected objects in order to search for small-scale structure in molecular cloud cores associated with regions of high-mass star formation. In some cases, ripples were detected in the line profiles, which could be due to the presence of a large number of unresolved small clumps in the telescope beam. The number of clumps for regions with linear scales of ~0.2-0.5 pc is determined using an analytical model and detailed calculations for a clumpy cloud model; this number varies in the range: ~2 10^4-3 10^5, depending on the source. The clump densities range from ~3 10^5-10^6 cm^{-3}, and the sizes and volume filling factors of the clumps are ~(1-3) 10^{-3} pc and ~0.03-0.12. The clumps are surrounded by inter-clump gas with densities not lower than ~(2-7) 10^4 cm^{-3}. The internal thermal energy of the gas in the model clumps is much higher than their gravitational energy. Their mean lifetimes can depend on the inter-clump collisional rates, and vary in the range ~10^4-10^5 yr. These structures are probably connected with density fluctuations due to turbulence in high-mass star-forming regions.Comment: 23 pages including 4 figures and 4 table

    The Dispersion Velocity of Galactic Dark Matter Particles

    Get PDF
    The self-consistent spatial distribution of particles of Galactic dark matter is derived including their own gravitational potential, as also that of the visible matter of the Galaxy. In order to reproduce the observed rotation curve of the Galaxy the value of the dispersion velocity of the dark matter particles, \rmsveldm, should be \sim 600\kmps or larger.Comment: RevTex, 4 pages, 1 ps figure, accepted for publication in Physical Review Letter

    Star Formation in Massive Protoclusters in the Monoceros OB1 Dark Cloud

    Full text link
    We present far-infrared, submillimetre, and millimetre observations of bright IRAS sources and outflows that are associated with massive CS clumps in the Monoceros OB1 Dark Cloud. Individual star-forming cores are identified within each clump. We show that combining submillimetre maps, obtained with SCUBA on the JCMT, with HIRES-processed and modelled IRAS data is a powerful technique that can be used to place better limits on individual source contributions to the far-infrared flux in clustered regions. Three previously categorized "Class I objects" are shown to consist of multiple sources in different evolutionary stages. In each case, the IRAS point source dominates the flux at 12 and 25 microns. In two cases, the IRAS point source is not evident at submillimetre wavelengths. The submillimetre sources contribute significantly to the 60 and 100 micron fluxes, dominating the flux in the 100 micron waveband. Using fluxes derived from our technique, we present the spectral energy distribution and physical parameters for an intermediate-mass Class 0 object in one of the regions. Our new CO J=2-1 outflow maps of the three regions studied indicate complex morphology suggestive of multiple driving sources. We discuss the possible implications of our results for published correlations between outflow momentum deposition rates and "source" luminosities, and for using these derived properties to estimate the ratio of mass ejection rates to mass accretion rates onto protostars.Comment: 12 pages, 11 gzipped gif figures, LaTex file and MNRAS style files, accepted by MNRAS, v2: reference typos and author affiliation have been correcte

    The HII region G35.673-00.847: another case of triggered star formation?

    Get PDF
    As part of a systematic study that we are performing with the aim to increase the observational evidence of triggered star formation in the surroundings of HII regions, we analyze the ISM around the HII region G35.673-00.847, a poorly studied source. Using data from large-scale surveys: Two Micron All Sky Survey, Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), MIPSGAL, Galactic Ring Survey (GRS), VLA Galactic Plane Survey (VGPS), and NRAO VLA Sky Survey (NVSS) we performed a multiwavelength study of G35.673-00.847 and its surroundings. The mid IR emission, shows that G35.673-00.847 has an almost semi-ring like shape with a cut towards the galactic west. The radius of this semi-ring is about 1.5' (~1.6 pc, at the distance of ~3.7 kpc). The distance was estimated from an HI absorption study and from the analysis of the molecular gas. Indeed, we find a molecular shell composed by several clumps distributed around the HII region, suggesting that its expansion is collecting the surrounding material. We find several YSO candidates over the molecular shell. Finally, comparing the HII region dynamical age and the fragmentation time of the molecular shell, we discard the collect and collapse as the mechanism responsible for the YSOs formation, suggesting other processes such as radiative driven implosion and/or small-scale Jeans gravitational instabilities.Comment: Accepted for publication in A&A, 18 October 2010. Some figures were degraded to reduce file siz
    corecore